Jinlong Wu

Phone: 608-265-1355 Email: jinlong.wu@wisc.edu Website: www.jinlongwu.org RM2047 - 1513 UNIVERSITY AVE MADISON, WI 53706-1539

Education

Sep. 2014-Sep. 2018	Virginia Tech	Ph.D.
	Major: Aerospace Engineering (Advisor: Prof. Heng Xiao)	
Sep. 2011-Jun. 2014	Southeast University, China	Master
	Major: Power Engineering	
Sep. 2007-Jun. 2011	Southeast University, China	Bachelor
	Major: Thermal Energy and Power Engineering	

Work Experiences

Aug. 2022-present	Department of Mechanical Engineering	Assistant Professor
Mar. 2023-present	Data Science Institute	Affiliated Faculty
	University of Wisconsin-Madison	
Aug. 2021-July. 2022	California Institute of Technology	Research Scientist
	Supervisors: Prof. Andrew Stuart, Prof. Tapio Schneider	
Jan. 2019-July. 2021	California Institute of Technology	Postdoctoral Scholar
	Supervisors: Prof. Andrew Stuart, Prof. Tapio Schneider	
Sep. 2018-Dec. 2018	University of California, Los Angeles	Visiting Scholar
	Host: Institute for Pure and Applied Mathematics	
May. 2018-Aug. 2018	Lawrence Berkeley National Laboratory	Summer Intern
	Supervisor: Dr. Prabhat Ram	

Research Interests

Scientific Machine Learning, Computational Fluid Dynamics, Turbulence, Data Assimilation, Stochastic Processes, Bayesian Inference, Uncertainty Quantification, Inverse Problems, Multiscale Modeling, Complex Engineering Systems

Publications^a

Journal Papers

- X. Dong, C. Chen, J.-L. Wu, "Data-Driven Stochastic Closure Modeling via Conditional Diffusion Model and Neural Operator". Submitted to Journal of Computational Physics (2024).
- C. Chen, J.-L. Wu, "Operator Learning for Continuous Spatial-Temporal Model with A Hybrid Optimization Scheme", Submitted to Journal of Computational Physics (2024).
- C. Chen, N. Chen, J.-L. Wu, "CGNSDE: Conditional Gaussian Neural Stochastic Differential Equation for Modeling Complex Systems and Data Assimilation". Computer Physics Communications (2024).

^a More details can be found on my Google Scholar Profile.

- J. Wang, S. Wang, H. Unjhawala, J.-L. Wu, D. Negrut, "MBD-NODE: physics-informed data-driven modeling and simulation of constrained multibody systems". Multibody System Dynamics (2024).
- H. Unjhawala, T. Hansen, H. Zhang, S. Caldraru, S. Chatterjee, L. Bakke, J.-L. Wu, R. Serban, D. Negrut, "An expeditious and expressive vehicle dynamics model for applications in controls and reinforcement learning". IEEE Access (2024).
- J.-L. Wu, M. Levine, T. Schneider, A. Stuart, "Learning About Structural Errors in Models of Complex Dynamical Systems". Journal of Computational Physics (2023).
- C. Chen, N. Chen, J.-L. Wu, "CEBoosting: Online Sparse Identification of Dynamical Systems with Regime Switching by Causation Entropy Boosting". Chaos (2023).
- H.M. Unjhawala, R. Zhang, W. Hu, **J.-L. Wu**, R. Serban, D. Negrut, "Using a Bayesian-Inference Approach to Calibrating Models for Simulation in Robotics". Journal of Computational and Nonlinear Dynamics (2023).
- R Oliver, I Lopez-Gomez, A Garbuno-Iñigo, DZ Huang, E Bach, J.-L. Wu, "EnsembleKalmanProcesses. jl: Derivative-free ensemble-based model calibration". Journal of Open Source Software (2022).
- T. Schneider, A.M. Stuart, J.-L. Wu^b, "Ensemble Kalman Inversion for Sparse Learning of Dynamical Systems from Time-Averaged Data". Journal of Computational Physics (2022).
- T. Schneider, O. Dunbar, J.-L. Wu, L. Bottcher, D. Burov, A. Garbuno-Inigo, G. Wagner, S. Pei, C. Daraio, R. Ferrari, J. Shaman, "Epidemic Management and Control Through Risk-Dependent Individual Contact Interventions". PLOS Computational Biology (2022).
- T. Schneider, A.M. Stuart, J.-L. Wu^b, "Learning Stochastic Closures Using Ensemble Kalman Inversion". Transactions of Mathematics and Its Applications (2021).
- K. Kashinath, M. Mustafa, A. Albert, J.-L. Wu, et al., "Physics-Informed Machine Learning: Case Studies for Weather and Climate Modeling". Philosophical Transactions of the Royal Society A (2021).
- Y. Zeng, J.-L. Wu, H. Xiao, "Enforcing Deterministic Constraints on Generative Adversarial Networks for Emulating Physical Systems", Communications in Computational Physics (2021).
- J.-L. Wu, K. Kashinath, A. Albert, D. Chirila, Prabhat, H. Xiao. "Enforcing Statistical Constraints in Generative Adversarial Networks for Modeling Chaotic Dynamical Systems". Journal of Computational Physics (2020).
- H. Xiao, J.-L. Wu, S. Laizet, L. Duan, "Flows Over Periodic Hills of Parameterized Geometries: Datasets for Data-Driven Turbulence Modeling from Direct Simulations". Computers & Fluids (2020).
- J.-L. Wu, H. Xiao, R. Sun, Qiqi Wang. "Reynolds-Averaged Navier-Stokes Equations with Explicit Data-Driven Reynolds Stress Closure Can Be Ill-Conditioned". Journal of Fluid Mechanics (2019).
- J.-L. Wu, R. Sun, S. Laizet, H. Xiao. "Representation of Stress Tensor Perturbations with Application in Machine-Learning-Assisted Turbulence Modeling". Computer Methods in Applied Mechanics and Engineering, (2019).
- J.-L. Wu, C. Michelen, H. Xiao. "Physics-Informed Covariance Kernel for Model-Form Uncertainty Quantification with Application to Turbulent Flows". Computers & Fluids (2019).
- C. Michelen, J.-L. Wu, H. Xiao, E. Paterson. "Data-Driven, Physics-Based Feature Extraction from Fluid Flow Fields Using Convolutional Neural Networks". Communications in Computational Physics, (2019).
- X.-L. Zhang, J.-L. Wu, O. Coutier-Delgosha, H. Xiao, "Recent Progress in Augmenting Turbulence Models with Physics-Informed Machine Learning". Journal of Hydrodynamics, (2019).
- J.-L. Wu, H. Xiao, E. Paterson. "Physics-Informed Machine Learning Approach for Augmenting Turbulence Models: A Comprehensive Framework". Physical Review Fluids (2018).
- J.-L. Wu, X.-L. Yin, H. Xiao. "Seeing Transport Properties from Images: Fast Prediction of Porous Media Permeability with Convolutional Neural Networks". Science Bulletin (2018).

^b Author names are listed alphabetically.

- J.-L. Wu, J.-X. Wang, H. Xiao, J. Ling. "A Priori Assessment of Prediction Confidence for Data-Driven Turbulence Modeling". Flow, Turbulence and Combustion (2017).
- J.-X. Wang, J.-L. Wu, H. Xiao. "Physics-Informed Machine Learning Approach for Reconstructing Reynolds Stress Modeling Discrepancies Based on DNS Data". Physical Review Fluids (2017).
- J.-L. Wu, J.-X. Wang, H. Xiao. "A Bayesian Calibration–Prediction Method for Reducing Model-Form Uncertainties with Application in RANS Simulations". Flow, Turbulence and Combustion (2016).
- H. Xiao, J.-L. Wu, J.-X. Wang, R. Sun, C.J. Roy. "Quantifying and Reducing Model-Form Uncertainties in Reynolds-Averaged Navier–Stokes Simulations: A Data-Driven, Physics-Informed Bayesian Approach". Journal of Computational Physics (2016).
- J.-X. Wang, J.-L. Wu, H. Xiao. "Incorporating Prior Knowledge for Quantifying and Reducing Model-Form Uncertainties in RANS Simulations". International Journal for Uncertainty Quantification (2016).

Conference Papers

- J.-L. Wu, J.-X. Wang, H. Xiao, and J. Ling, "Visualization of High Dimensional Turbulence Simulation Data Using t-SNE", 19th AIAA Non-Deterministic Approaches Conference. Grapevine, TX, 2017.
- H. Xiao, J.-L. Wu, J.-X. Wang, E. Paterson. "Physics-Informed Machine Learning for Predictive Turbulence Modeling: Progress and Perspectives", AIAA SciTech Meeting. Grapevine, TX, 2017.
- J.-X. Wang, J.-L. Wu, J. Ling, G. Iaccarino, H. Xiao, "Physics-Informed Machine Learning for Predictive Turbulence Modeling: Toward a Complete Framework", tech. rep., Proceedings of Summer Research Program, Center of Turbulence Research, Stanford University, Stanford, CA, USA, 2016.

Presentations

Invited Talks

•	JL. Wu. Operator learning for data-driven closure models of complex	Iowa State University, May. 2024
	dynamical systems.	
•	JL. Wu. Data-Driven Closure Modeling Using Derivative-free	Lawrence Livermore National Laboratory,
	Kalman Methods.	Oct. 2023
•	JL. Wu. Data-Driven Closure Modeling with Limited Data.	Argonne National Laboratory, Jun. 2023
•	JL. Wu. Data-Driven Closure Modeling Using Derivative-Free	University of Iowa, Oct. 2022
	Kalman Methods	
•	JL. Wu. Data-Driven Closure Modeling Using Derivative-free	Alan Turing Institute, Jul. 2022
	Kalman Methods.	
•	JL. Wu. Data-Driven Closure Modeling Using Derivative-free	Southeast University, Jun. 2022
	Kalman Methods.	
•	JL. Wu. Closure Modeling of Dynamical Systems Using Bayesian	Google Research, Aug. 2021
	Inference and Physics-Informed Machine Learning.	
•	JL. Wu, JX. Wang, H. Xiao. Physics-Informed Machine Learning	UT Austin, Jun. 2019
	for Turbulence Modeling.	
•	JL. Wu, JX. Wang, H. Xiao. Predictive Turbulence Modeling with	Heidelberg, May. 2019
	Bayesian Inference and Physics-Informed Machine Learning	
•	JL. Wu, JX. Wang, H. Xiao. Data-Driven Turbulence Modeling	UCLA, Nov. 2018
	with Bayesian Inference and Physics-Informed Machine Learning.	
•	JL. Wu, JX. Wang, H. Xiao. Predictive Turbulence Modeling with	Caltech, Oct. 2018
	Bayesian Inference and Physics-Informed Machine Learning	

Selected Conference Talks

•	X. Dong, C. Chen, JL. Wu. Data-Driven Modeling for Stochastic Closures of Complex	SIAM UQ, Mar. 2024
	Dynamical Systems.	
•	C. Chen, N. Chen, JL. Wu. Online Sparse Identification of Dynamical Systems with	APS DFD, Nov 2023
	Regime Switching by Causation Entropy Boosting.	
•	JL. Wu, T. Schneider, A. Stuart. Learning Stochastic Closures Using Sparsity-	SIAM MDS, Sep. 2022
	Promoting Ensemble Kalman Inversion.	
•	JL. Wu, Z. Huang, Z. Shen, T. Schneider, A. Stuart. Data-driven modeling of non-local	APS DFD, Nov. 2021
	mixing phenomena in geophysical flows.	
•	JL. Wu, T. Schneider, A. Stuart. Estimating model error using sparsity-promoting	APS DFD, Nov. 2020
	ensemble Kalman inversion.	
•	JL. Wu, Y. Zeng, K. Kashinath, A. Albert, Prabhat, H. Xiao. Enforcing Physical	SIAM CSE, Feb. 2019
	Constraints in Machine Learning with Application to Fluid Flows.	
•	JL. Wu, Y. Zeng, K. Kashinath, A. Albert, Prabhat, H. Xiao. Physics-Informed	APS DFD, Nov. 2018
	Generative Learning to Predict Unresolved Physics in Complex Systems.	
•	JL. Wu, C. Michelen, JX. Wang, H. Xiao. Reducing Model Discrepancies in	SIAM UQ, Apr. 2018
	Turbulent Flow Simulations with Physics-informed Machine Learning.	
•	JL. Wu, R. Run, QQ. Wang, H. Xiao. On the Conditioning of Machine-Learning-	APS DFD, Nov. 2017
	Assisted Turbulence Modeling.	
•	JL. Wu, JX. Wang, H. Xiao. Reducing Model Discrepancy in Turbulent Flow	SIAM CSE, Feb. 2017
	Simulations: A Physics-Informed Machine Learning Approach.	

Teaching Experiences

University of Wisconsin-Madison

•	ME 363: Fluid Dynamics	Fall 2023, Fall 2024
•	ME 563: Intermediate Fluid Dynamics	Spring 2023
•	ME 964: Scientific Computing and Machine Learning for Engineering	Fall 2022, Fall 2023

Caltech (As Teaching Assistant)

ACM 154: Inverse Problems and Data Assimilation

Virginia Tech (As Teaching Assistant)

•	AOE 5984: Machine Learning and Uncertainty Quantification	n
---	---	---

- AOE 4154: Aerospace Engineering Laboratory
- AOE 3054: Experimental Methods •

Journal Review Experiences

- Nature Computational Science
- Physical Review Letters •
- Computer Methods in Applied Mechanics and Engineering •
- Journal of Fluid Mechanics •
- SIAM Journal on Scientific Computing •

- Scientific Reports
- Journal of Computational Physics •
- Journal of Advances in Modeling Earth Systems •
- Physical Review Fluids •
- Physical Review E •

Fall 2019

- Fall 2017 Fall 2017, 2016, 2014 Spring 2018, 2017, 2015

• Water Resources Research

with Prof. Nan Chen)

•

•

•

- Flow, Turbulence and Combustion
- Aerospace Science and Technology
- Workshops and Symposiums

- Journal of Verification, Validation and Uncertainty Quantification
- Advanced Powder Technology
- Communications in Computational Physics

Dec. 2024

Mar. 2024

Aug. 2023

2015-present

Prof. Peng Chen) Minisymposium at SIAM Mathematics of Data Science 2022 (co-organize with Dr. Daniel Huang) Sep. 2022 • Minisymposium at SIAM Mathematics for Planetary Earth 2020 (co-organize with Dr. Yair Cohen) Aug. 2020 • Machine Learning for Geosciences Workshop at AGU Fall Meeting 2019 (instructor) Dec. 2019 • **Memberships** Tau Beta Pi the Engineering Honor Society, Member 2016-present • American Geophysical Union, Member 2018-present • Society for Industrial and Applied Mathematics, Member 2016-present •

Special Session at 14th American Institute of Mathematical Sciences (AIMS) Conference (co-organize

Minisymposium at SIAM Uncertainty Quantification 2024 (co-organize with Prof. Xin T. Tong)

Minisymposium at International Congress on Industrial and Applied Mathematics (co-organize with

• American Physical Society, Member